A PROJECT WORK ON 'NUMERICAL ANALYSIS'

SUBMITTED IN PARTIAL FULFILLMENT FOR AWARD OF DEGREE OF **BACHELOR OF SCIENCE IN MATHEMATICS**

> **UNDER THE GUIDANCE OF B.REVATHI LECTURER IN MATHEMATICS**

BY

III B.Sc M.P.C S

DEPARTMENT OF MATHEMATICS

S.CH.V.P.M.R GOVT DEGREE COLLEGE GANAPAVARAM ACADEMIC YEAR 2021-22

DEPARTMENT OF MATHEMATICS S.CH.V.P.M.R GOVT DEGREE COLLEGE GANAPAVARAM

CERTIFICATE

This is to certify that the work, incorporated in this project titled "NUMERICAL ANALYSIS" submitted by III B.Sc MPCShave been carried out under my supervision during the academic year 2021-22₁, K SRAVANI

Place: Ganapavaram

Date: 0 5/08/22

ecturer in MATHEMATICS

DEPARTMENT OF MATHEMATICS S.CH.V.P.M.R GOVT DEGREE COLLEGE GANAPAVARAM

DECLARATION

I hereby declare that the project titled "NUMERICAL ANALYSIS" work was done by me under the guidance of B.REVATHI, Lecturer in Mathematics and submitted to S.CH.V.P.M.R Govt degree college, Ganapavaram for the award of B.Sc degree from Adikavi Nannaya University, Rajamahendravaram.

Place: Ganapavaram

Date: 6 8 2022

K. Snavani Signature of the Student

BATCH-III

CONTENTS

REFERENCES.

 27

ABSTRACT

ABSTRACT

The main aim of this project is to produce the applications of finite differences on real life which we studied in sixth semester.

This project is divided into three chapters.

Chapter 1 is introduction, in which we discuss the existing literature that is needed to develop the project.

In chapter 2 we discuss the working rule and workout examples which support to the chapter 3

In chapter 3, we produce the numerical analysis and its applications on real time by taking examples of stastical data, now we explain Newton's forward and backward interpolation formula by taking an example of finding population of a particular year. Further now we explain the Gauss backward interpolation fomula by taking an example to find sales in a particular year and then we explained Stirlings interpolation formula by taking an example to find the poverty number (%) in a particular year.

CHAPTER-1 **INTRODUCTION**

Chapter-1

INTRODUCTION

INTERPOLATION:

Let $y=f(x)$ be a function of x to compute the value of y corresponding to value of x where x lies between given data is called interpolation

FINITE DIFFERENCE:

Let $y=f(x)$ is a function of single variable in x and y_0 , y_1 , $y_2...y_n$

are the values of y corresponding to the values x_0 , x_1 , x_2 , x_n of x respectively.

Therefore, the final differences are three types

- Forward differences (Δ) .
- Backward differences (∇) .
- Central difference (δ)

Forward differences (Δ) :

let y=f(x) is a function of x and y₀, y₁, y₂, y_n are the values of y corresponding to the values x_0 , $x_1 = x_0 + h$, $x_2 = x_0 + 2h$... $x_n = x_0 + nh$ of x respectively. The

difference y_1-y_0 , y_2-y_1 ... y_n-y_{n-1} are called first ordered

Forward difference of y given as

 Δ y₀ = y₁-y₀, Δ y₁ = y₂-y₁, Δ y_{n-1} = y_n-y_{n-1}.

Therefore $\Delta y_r = y_{r+1} - y_r$ r=0, 1, 2...

Similarly

$$
\Delta^{\varepsilon} y_t = \Delta y_{t+1} \Delta y_t \quad t = 0, 1, 2, \dots
$$

And

$$
\Delta^{n} y_{r} = \Delta^{n-1} y_{r+1} - \Delta^{n-1} y_{r}
$$
 if r=0, 1, 2,

Forward difference table:

Backward differences (∇) : let y=f(x) is a function of x and y₀, y₁, y₂, y_n are the values of y corresponding to the values x_0 , $x_1 = x_0 + h$, $x_2 = x_0 + 2h$... $x_n = x_0 +$ nh of x respectively. The difference y₁-y₀, y₂-y₁... y_n-y_{n-1} are called first ordered backward difference of y given as

 $\nabla y_1 = y_1 - y_0, \nabla y_2 = y_2 - y_1, \dots, \nabla y_n = y_n - y_{n-1}.$

Therefore $\nabla y_t = y_{t} - y_{t-1}$ r=1,2....n

Similarly

$$
\nabla^2 y_r = \nabla y_r - \nabla y_{r-1} = 2, 3, \dots, n
$$

And

$$
V^{n} y_{r} = \nabla^{n-1} y_{r} - \nabla^{n-1} y_{r-1} \quad r = n, n+1, \ldots
$$

Backward difference table:

Central difference(δ):

let $y=f(x)$ is a function of x and $y_0, y_1, y_2, \ldots, y_n$ are the values of y corresponding to the values x_0 , $x_1 = x_0 + h$, $x_2 = x_0 + 2h$... $x_0 = x_0 + nh$ of x respectively. The difference y_1-y_0 , $y_2-y_1... y_n-y_n-1$ are called first ordered

central difference of y i.e.,

 $\delta y1/2=y1-y0, \delta y_{3/2}-y_2,y_1,\ldots,\delta_{n-1/2}-y_n-y_{n-1}$

therefore $\delta_{r-1/2} = y_r - y_{r-1}, r = 1, 2, 3, \dots$

The differences $\delta y_{3/2} - \delta y_{1/2}, \delta y_{5/2} - \delta y_{3/2}$ are called the second ordered center

difference and we denote them as $\delta^2 y_1, \delta^2 y_2$

therefore $\delta^2 y_r = \delta y_{r+1/2} - \delta y_{r-1/2}$ r=1,2.......

similarly $\delta^n y_r = \delta^{n-1} y_{r+1/2} - \delta^{n-1} y_{r-1/2}$ if is even

 $\delta^n y_{r-1/2} = \delta^{n-1} y_r - \delta^{n-1} y_{r-1}$ if n is odd

 \mathbf{x} $y=f(x)$ δ^2 y δ^4 y δy $\bar{\sigma}^3$ y $X₀$ y₀ $y_1 - y_0 = \delta y_{1/2}$ $\delta y_{3/2} - \delta y_{1/2} = \delta^2 y_1$ $X₁$ y₁ $\delta^2 y_2\mbox{-}\delta^2 y_1\mbox{=} \delta^3 y_{3/2}$ $y_2 - y_1 = \delta y_{3/2}$ $\delta y_{5/2} - \delta y_{3/2} = \delta^2 y_2$ δ^3 y_{5/2}- δ^3 y_{3/2}- δ^4 y₂ x_2 y_2 $\delta^2 y_3 - \delta^2 y_2 = \delta^3 y_{5/2}$ $y_3 - y_2 = \delta y_{5/2}$ $\Delta y_{7/2} - \delta y_{5/2} = \delta^2 y_3$ x_3 y_3 $y_4 - y_3 = \delta y_{7/2}$ $X₄$ y₄ $\hat{\pmb{\epsilon}}$

Center difference table

Symbolic relations and separation of symbols:

1. Forward difference operator(Δ):

The forward difference operator Δ is defined by the equation

 $\Delta f(x)=f(x+h)-f(x)$

2. Backward difference operator (∇) :

The difference operator backward ∇ is defined by the equation $\nabla f(x) = f(x) - f(x-h)$

3. Center difference operator (δ) :

The difference operator is defined by the equation $\delta f(x) = f(x+h/2) - f(x-h/2)$

4. Average operator (μ) :

The average operator μ is defined by the equation $\mu(f.x)=1/2[f(x+h/2)+f(x-h/2)]$

5. Shift operator (E):

The shift operator E is defined by the equation

 $E(f(x)) = f(x+h)$ or $E(y_t) = y_{t+1}$

The 2nd ordered shift operator

 $E^{2}(f(x)) = E(E f(x))$ or E^2 y₀ = $E(E(y_t))$ $= E(f(x+h))$ $= E(y_{r+1})$ $= f(x+h+h)$ $= y_{r+1+1}$ $= f(x+2h)$ $= y_{r+2}$ $E^{n}(f(x)) = f(x + nh)$ or $E^n y_r = y_{r+n}$

6. Inverse Shift operator (E^{-1}) :

The Inverse shift operator E^{-1} is defined by the equation

 $E^{-1}(f(x)) = f(x-h)$ or $E^{-1}(y_r) = y_{r-1}$

The 2nd ordered Inverse shift operator

 $E^{-2}(f(x)) = E^{-1}(E f(x))$ $\begin{array}{c} E^{-2} \ y_0 = E^{-1} \ (E^{-1}(y_r) \\ = E^{-1} \ (y_{r-1}) \end{array}$ or $= E^{-1} (f(x-h))$ $=f(x-h-h)$ $= y_{r-1-1}$ $= f(x-2h)$ $=y_{r-2}$ $E^{-n}(f(x)) = f(x-nh)$ $E^{-n} y_r = y_{r+n}$ or

7. Identity operator (I):

The identity operator I is defined by the equation

 $I(f(x))=f(x)$

8. Differential operator (D):

The Differential operator D is defined by the equation

 $Df(x) = d/dx (f(x))$

Second order

 $D^2 f(x)=d^2/dx^2(f(x))$

nthorder

$$
D^n f(x)=d^n/dx^n(f(x))
$$

9. Inverse differential operator (or) Integral operator :

The inverse differential operator or integral operator I is defined by the equation

$$
J(f(x)) = D^{-1}f(x)
$$

• Fundamental theorem infinite difference:

If $f(x)$ is a polynomial of degree n and the values of x are equally spaced or equal intervals then the nth order difference of $f(x)$ is constant and the $(n+1)th$ difference of $f(x)$ is 0.

Or

If $f(x) = a_0 + a_1x + a_2x + ... + a_nx_n = \sum_{i=0}^{n} a_i x_i$ a polynomial of degree n. Then $\Delta^n f(x) = a_n n! h^n$ and $\Delta^{n+1} f(x) = 0$.

Chapter-2

INTERPOLATION WITH EQUAL INTERVALS

Chapter-2

INTERPOLATION WITH EQUAL INTERVALS

Newton's forward interpolation formulae:

Statement: If $y = f(x)$ is a function and $y_0 = f(x)$, $y_1 = f(x)$, $y_0 = f(x)$, $y_1 = f(x_1)$, $y_2 = f(x_2), \dots, y_n = f(x_n)$, are the values of $y = f(x)$ corresponding to the values x_0 , Y_u= y₀+u Δ y₀+u $\frac{(u-1)\Delta^2 y_0 + u(u-1)(u-2) \Delta^3 y_0 + \ldots + u(u-1) \ldots (u-(n-1)) \Delta^n y_0}{3!}$ Where $u=x-x_0$

Proof: given that $y = f(x)$ is a function and $y_0 = f(x)$, $y_1 = f(x)$, $y_0 = f(x)$, $y_1 = f(x_1)$, $y_2 = f(x_2), \ldots, y_n = f(x_n)$, are the values of $y = f(x)$ corresponding to the values x_0 , $x_1=x_0+h$, $x_2=x_0+2h$, ... $x_n=x_0+nh$ of augment x.

Consider nthdegree polynomial

$$
f(x) = A_0 + A_1(x-x_0) + A_2(x-x_0)(x-x_1) + ... + A_n(x-x_0)(x-x_1)....(x-x_{n-1}) \quad (1)
$$

where A_0, A_1, \ldots, A_n are constants

put $x=x_0$ in equation 1

 $f(x_0) = A_0 + 0 + 0 + \dots + 0$

 $A_0 = f(x_0) = y_0$

put $x=x_1$ in equation 1 we get

 $f(x_1) = A_0 + A_1(x-x_0) + 0 + \dots + 0$

 $y_1 = y_0 + A_1(x_0 + h - x_0)$ $y_1-y_0 = A_1 h$ $A_1 h = \Delta y_0$ $A_1 = 1/h \Delta y_0$ put $x=x_2$ in equation 1 we get $f(x_2) = A_0 + A_1(x_2 - x_0) + A_2(x_2 - x_0) (x_2 - x_1) + 0$+0 $y_2 = y_0 + 1/h \Delta y_0(x_0 + 2h - x_0) + A_2(x_0 + 2h - x_0) + ... + (x_0 + 2h - x_h)$ $y_2 = y_0 + 2(y_1 - y_0) + A_2 2h^2$ $A_2 2h^2 = y_2 - y_0 - 2y_1 + 2y_0$ $A_2 = 1/2h^2(y_2 - 2y_1 + y_0)$ $A_2 = \frac{1}{2} \ln^2 \Delta^2 y_0$ Similarly $A_3 = 1/(3!h^3)\Delta^3 y_0$

and $A_4 = 1/(4!h^4)\Delta^4 y_0$

. $A_n = 1/n! h^n \Delta^n y_0$

Substitute the values of A_0, A_1, \ldots, A_n in equation 1 we get

 $f(x) = y_0 + 1/h \Delta y_0(x-x_0) + \frac{1}{2} \ln^2 \Delta^2 y_0(x-x_0) (x-x_1) + ... + \frac{1}{n} \ln^n \Delta^n y_0(x-x_0) (x-x_1) ...$

 $(x-x_{n-1})$

since $u=x-x_0$ $x=x_0+uh$

 $f(x_0+uh) = y_0+1/h \Delta y_0(x_0+uh -x_0) + \frac{1}{2}lh^2 \Delta^2 y_0(x_0+uh -x_0) (x_0+uh -x_1) + ... +$ $1/n!h^n\Delta^n y_0(x_0+uh-x_0)(x_0+uh-x_1)...,(x_0+uh-x_{n-1})$

Y_u= y₀+u Δ y₀+u(u-1) Δ ²y₀ +u(u-1)(u-2) Δ ³y₀ +......+u(u-1).....(u-(n-1)) Δ ⁿy₀
n! $Y_u = y_0 + u c_1 \Delta y_0 + u c_2^2 y_0 + u c_3 \Delta^3 y_0 + \dots + u c_n \Delta^n y_0$

Newton's backward interpolation formulae:

If $y = f(x)$ is a function and $y_0 = f(x_0)$, $y_1 = f(x_1)$, $y_2 = f(x_2)$ $y_n = f(x_n)$ are the values of y= f(x) corresponding to the values x_0 , $x_1=x_0+h$, $x_2=x_0+2h$,....... $xn=$ x_0 +nh of augment x.

$$
Y_{u} = y_{n} + u\nabla y_{n} + \underbrace{u(u+1)\nabla^{2}y_{n} + u(u+1)(u+2)}_{2!} \nabla^{3}y_{n} + \dots + \underbrace{u(u+1)\dots(u+(n-1))}_{n!} \nabla^{n}y_{n}
$$

Where $u=x-x_n$

Gauss' forward interpolation formulae:

Let y= f(x) is a function and y₋₃ = f(x₋₃), y₋₂ = f(x₋₂), y₋₁ = f(x₋₁), y₀ = f(x₀), y₁ = $f(x_1)$, $y_2 = f(x_2)$, $y_3 = f(x_3)$ are the values of $y = f(x)$ corresponding to the values x are $x_{-3} = x_0 - 3h$, $x_1 = x_0 + h$, $x_{-2} = x_0 - 2h$, $x_{-1} = x_0 - h$, x_0 , $x_1 = x_0 + h$, $x_2 = x_0 + 2h$, $x_3 =$

 x_0+3hthen

$$
Y_{u} = y_{0} + u\Delta y_{0} + u(u-1)\Delta^{2}y_{-1} + u(u+1)(u-1)\Delta^{3}y_{-1} + u(u+1)u(u-1)(u-2)\Delta^{4}y_{-2} + \dots \dots
$$

Where $u=x-x_0$ $\frac{h}{h}$

Proof: Given that $y = f(x)$ is a function of x which takes the values..... $y_{-3} = f(x_{-3}), y_{-2} = f(x_{-2}), y_{-1} = f(x_{-1}), y_0 = f(x_0), y_1 = f(x_1), y_2 = f(x_2), y_3 = f(x_2)$ $f(x_3)$corresponding to the values of x are

 $x_{-2} = x_0 - 2h$, $x_1 = x_0 + h$, $x_{-2} = x_0 - 2h$, $x_{-1} = x_0 + h$, $x_0 = x_0 + h$, $x_2 = x_0 + 2h$, $x_3 = x_0 + 3h$ and $u = x-x_0$ $\,$ h

By NFIF

$$
Y_{u} = y_{0} + u\Delta y_{0} + u(u-1)\Delta^{2}y_{0} + u(u-1)(u-2)\Delta^{3}y_{0} + u(u-1)u(u-2)(u-3)\Delta^{4}y_{0} + \dots
$$

Difference table:

From table X_0 A² y₁ Δ^4 y₂ Δ^6 y₃
 Δ^8 y₂ Δ^6 y₃

And Δ^2 y₀- Δ^2 y₋₁= Δ^3 y₋₁= Δ^2 y₀= Δ^2 y₋₁-+ Δ^3 y₋₁ Δ^3 y₀- Δ^3 y₋₁= Δ^4 y₋₁= Δ^3 y₀= Δ^3 y₋₁-+ Δ^4 y₋₁ Similarly Δ^4 yo = Δ^4 y + Δ^6 y₋₁

And
$$
\Delta^4
$$
 y₋₁ - Δ^4 y₋₂ = Δ^5 y₋₂ = Δ^4 y₋₂ + Δ^5 y₋₂ Δ^5 y₋₁ = Δ^5 y₋₂ + Δ^6 y₋₂

From equation 1 we get

$$
Y_{u} = y_{0} + u\Delta y_{0} + u(u-1) [\Delta^{2}y_{-1} + \Delta^{2}y_{-1}] + u(u-1)(u-2) [\Delta^{3}y_{-1} + \Delta^{4}y_{-1}] + \frac{u(u-1)(u-2)(u-3)}{4!}
$$

\n
$$
[\Delta^{4}y_{-1} + \Delta^{5}y_{-1}] + \dots
$$

\n
$$
Y_{u} = y_{0} + u\Delta y_{0} + u(u-1) \Delta^{2}y_{-1} + [u(u-1) + u(u-1)(u-2) \Delta^{3}y_{-1} + [u(u-1)(u-2) + u(u-1)(u-2)(u-3)]
$$

\n
$$
[\Delta^{4}y_{-1}] + \dots
$$

\n
$$
[\Delta^{4}y_{-1}] + \dots
$$

$$
Y_{u} = y_{0} + u\Delta y_{0} + u(u-1)\Delta^{2}y_{-1}u(u+1) + (u-1)\Delta^{3}y_{-1} + u(u+1)\frac{(u-1)(u-2)\Delta^{4}y_{-2} + \dots}{4!}
$$

This is called Gauss' forward interpolation formulae.

Gauss' backward interpolation formulae:

Let y= f(x) is a function and y₋₃ = f(x₋₃), y₋₂ = f(x₋₂), y₋₁ = f(x₋₁), y₀ = f(x₀), y₁ = $f(x_1)$, $y_2 = f(x_2)$, $y_3 = f(x_3)$ are the values of $y = f(x)$ corresponding to the values x are $x_{-3} = x_0 - 3h$, $x_1 = x_0 + h$, $x_{-2} = x_0 - 2h$, ... $x_{-1} = x_0 - h$, x_0 , $x_1 = x_0 + h$, $x_2 = x_0 + 2h$, $x_3 = x_0 + 3h$ x_0+3hthen

Where $u=x-x_0$

Striling's formula:

Let $y = f(x)$ is a function and y₋₃,y₋₂, y₋₁, y₀, y₁, y₂, are the values of x corresponding to the values x are X_{-3} , $X_{-2}X_{-1}X_0$, X_1 , X_2 , X_3 , then

$$
Y_{u} = y_{0} + u[\Delta y_{0} + \Delta y_{-1}]\frac{1 + u^{2} \Delta^{2} y_{-1} + (u^{2} - 1) u[\Delta^{3} y_{-1} + \Delta^{3} y_{-2}] + (u^{2} - 1) u^{2} \Delta^{4} y_{-2} + \dots}{24!}
$$

Where $u=x-x_0$
 h

Proof:Given that $y = f(x)$ is a function and y_3 , y_2 , y_1 , y_0 , y_1 , y_2 , are the values of x corresponding to the values x are x_{-3} , x_{-2} , x_{-1} , x_0 , x_1 , x_2 , x_3 , When $u=x-x_0$

$$
\mathbf{h}
$$

By GFIF

$$
Y_{u} = y_{0} + u\Delta y_{0} + u(u-1)\Delta^{2}y_{-1} + u(u+1)(u-1)\Delta^{3}y_{-1} + u(u+1)(u-1)(u-2)\Delta^{4}y_{-2} + \dots \dots \dots (1)
$$

By GBIF

$$
Y_{u} = y_{0} + u\Delta y_{-1} + u(u+1)\Delta^{2}y_{-1} + u(u+1)(u-1)\Delta^{3}y_{-1} + u(u+1)u(u-1)(u+2)\Delta^{4}y_{-2} + \dots \dots \dots
$$

3!

By adding $((1)+(2))/(2)$

 \mathbf{V}

$$
Y_{u} = y_{0} + u[\Delta y_{0} + \Delta y_{-1}] + u(u-1+u+1) \Delta^{2}y_{-1} + (u^{2}-1)u[\Delta^{3}y_{-1} + \Delta^{3}y_{-2}] + (u^{2}-1) u^{2} \Delta^{4}y_{-2+......}
$$

\n
$$
Y_{u} = y_{0} + u[\Delta y_{0} + \Delta y_{-1}] + u^{2} \Delta^{2}y_{-1} + (u^{2}-1)u[\Delta^{3}y_{-1} + \Delta^{3}y_{-2}] + (u^{2}-1) u^{2} \Delta^{4}y_{-2+......}
$$

This is called Gauss' central difference formula or striling formula

Chapter-3 **APPLICATIONS OF FINITE DIFFERENCES**

Chapter-3 **APPLICATIONS OF FINITE DIFFERENCES**

1. The population of a town in the given below estimate the population for the years 1895 and 1925.

Sol: Let $y=f(x)$ be the function of x

Difference table:

From the above table,

Here x_0 =1891, y_0 =46, Δy_0 =20, $\Delta^2 y_0$ = -5, $\Delta^3 y_0$ =2, $\Delta^4 y_0$ = -3

To find the population of the year 1895:

$$
u = x-x_0
$$

\n
$$
= \frac{1895-1891}{10}
$$

\n
$$
= 0.4
$$

\nBy NFIF
\n
$$
Y_u = y_0 + u\Delta y_0 + u(u-1)\Delta^2 y_0 + u(u-1)(u-2)\Delta^3 y_0 + \dots + u(u-1)\dots(u-(n-1))\Delta^n y_0
$$

\n
$$
f(x) = 46+0.4(20) + 0.4(0.4-1)(-5) + 0.4(0.4-1)(0.4-2)(2) + 0.4(0.4-1)(0.4-2)(0.4-3)(-3)
$$

\n
$$
f(x) = 46+0.4(20) + 0.4(-0.6)(-5) + 0.4(-0.6)(-1.6)(2) + 0.4(-0.6)(-1.6)(2.6)
$$

\n
$$
= 46+8+0.6+0.128+0.1248
$$

\n
$$
= 54.8528
$$

\nTo find f(1925):
\nHere x_n= 1931,y_n = 101, $\nabla y_n = 8, \nabla^2 y_n = -4, \nabla^3 y_n = -1, \nabla^4 y_n = -3,$
\n
$$
u = \frac{1925-1931}{h}
$$

\n
$$
u = \frac{1925-1931}{10}
$$

\n
$$
= -0.6
$$

By NBIF is

$$
Y_u = y_n + u\nabla y_n + u(\underline{u+1})\nabla^2 y_n + u(\underline{u+1})(u+2)\nabla^3 y_n + \ldots + u(\underline{u+1})\ldots \ldots (u+(n-1))\nabla^n y_n
$$

$$
f(1925) = 101 + \frac{(-0.6)(-0.6+1)}{2!}(-4) + \frac{(-0.6)(-0.6+1)(-0.6+2)}{3!}(-1) + \frac{(-0.6)(-0.6+1)(-0.6+2)(-0.6+3)}{4!}(-3)
$$

$$
= 101 + (-0.6)(0.4)(-2) + (-0.6)(8) + \frac{(0.6)(0.4)(1.4)}{6} + \frac{(0.6)(0.4)(1.4)(2.4)}{8}
$$

=101+0.48-4.8+0.056+0.1008
=96.8368

 $\overline{1}$

2. For the following are the no of deaths in 4 successive 10 year age group. Find the no of deaths at 45-50 and 50-55 age group

Sol:

Difference table

From table

 $X_0 = 35, y_0 = 13229, \ \Delta y_0 = 18139, \ \Delta^2 y_0 = 6086, \ \Delta^3 y_0 = 1885$ $X = 50$, $h=10$, $u = \frac{x-x0}{h} = \frac{50-35}{10} = 1.5$ By NFIF Y_u= y₀+u Δ y₀+u(u-1) Δ ²y₀ +u(u-1)(u-2) Δ ³y₀ +u(u-1)(u-2)(u-3) Δ ⁴y₀
3! = 13229 + 1.5(18139) + $\frac{(1.5)(1.5-1)(6086)}{2!}$ + $\frac{(1.5)(1.5-1)(1.5-2)}{3!}$ (1185)

 $=13229+27208.5+0.375(6086)-0.0625(1185)$

 $=13229+27208.5+2282.25-74.0625$

 $=426465.6875$

 $=42646$ (approx)

The no of deaths less than 55 years is 42646

The no of deaths b/w 45 and 50 = 42646-31368

 $=11278$

The no of deaths between $50-55 = 5593-42646$

 $=12947$

3. Tables gives the distance between nautical miles of the visible horizon for the given

height in feet above the earth surface $\overline{\mathbb{L}}$

Sol:Difference table

From the above table,

$$
y_0=15.04, \Delta y_0=1.77, \Delta^2 y_{-1}=-0.24, \Delta^3 y_{-1}=0.08, \Delta^4 y_{-2}=0.07, \Delta^5 y_{-2}=0.02, h=50,
$$

$$
u = \frac{x - x0}{h}
$$

$$
u = \frac{218 - 200}{50}
$$

By GFIF

$$
Y_{u} = y_{0} + u\Delta y_{0} + u(u-1) \Delta^{2}y_{-1}u(u+1) + (u-1) \Delta^{3}y_{-1} + u(u+1)(u-1)(u-2) \Delta^{4}y_{-2} + \dots
$$

\n
$$
= 15.04 + (0.36)(1.77) + \frac{(0.36)(0.36-1)(-0.29)}{2!} + \frac{(0.36)(0.36-1)(0.36+1)(0.08)}{3!} + \frac{(0.36)(0.36-1)(0.36+1)(0.36-2)(0.36+2)}{4!} + \dots
$$

\n
$$
= 15.04 + 0.06372 + \frac{(-0.2304)}{2}(-0.29) + \frac{(-0.3133)}{6}(-0.08) + \frac{(0.36)(-0.64)(1.36)(-1.64)(2.36)}{24} (0.02)
$$

\n
$$
= 15.04 + 0.06372 - 0.1152(-0.29) - (0.0522)(0.08) + 0.0214(0.07) + 0.0101(0.02)
$$

\n
$$
= 15.04 + 0.06372 - 0.1152(-0.29) - (0.0522)(0.08) + 0.0214(0.07) + 0.0101(0.02)
$$

\n
$$
= 15.04 + 0.6372 - 0.1152(-0.29) - (0.0522)(0.08) + 0.0214(0.07) + 0.0101(0.02)
$$

\n
$$
= 15.04 + 0.637 + 0.0334 - 0.004176 + 0.001498 + 0.000202
$$

 $=15.6781$

4. Interpolate by means of Gauss' back ward interpolation formula the sales of concern of the year 1976

Sol: let us take x_0 =1970

Difference table

$$
y_0 = 32, \Delta y_{-1} = 5, \Delta^2 y_{-1} = -1, \Delta^3 y_{-2} = 1, \Delta^4 y_{-2} = -2, \Delta^5 y_{-3} = -9
$$

Let $x=1976$, $x_0=1970$

 $h = 10$ then

$$
u = \frac{x - x_0}{h}
$$

=
$$
\frac{1976 - 1970}{10}
$$

=
$$
\frac{6}{10}
$$

= 0.6

From the Gauss's Backward difference formula we have

$$
u = y_0 + u\Delta y_{-1} + u(u+1)\Delta^2 y_{-1} + u(u+1)(u-1)\Delta^3 y_{-1} + u(u+1)u(u-1)(u+2)\Delta^4 y_{-2} + \dots
$$

= 32 + (0.6)(5) + $\frac{(0.6)(06+1)(-1)}{2}$ + $\frac{(0.6+1)(0.6-1)(0.6)(1)}{6}$

$$
+\frac{(0.6+1)(0.6-1)(0.6)(0.6+2)(-2)+(0.6+1)(0.6-1)(0.6)(0.6+2)(0.6-2)+}{24}
$$
\n
$$
=32+3-\frac{0.96}{2}-\frac{0.384}{6}+\frac{1.9968}{24}-\frac{12.5798}{120}
$$
\n
$$
=32+3-0.48-0.064+0.0832-0.1048
$$
\n
$$
=34.4344
$$

5. For the following are the percentage of poverty for successive 5 yaers

Find the percentage of poverty during the year 1996.

Sol:

From table

$$
y_0=43, \, \Delta y_{-1}=-9, \, \Delta^2 y_{-1}=11, \, \Delta^3 y_{-2}=12, \, \Delta^4 y_{-2}=30
$$

$$
u = \frac{x - x0}{h}
$$

=
$$
\frac{1996 - 1995}{5}
$$

= 0.2

 \overline{A} σ

From theStrilings formula we have

$$
u = y_0 + u[\Delta y_0 + \Delta y_{-1}] + u^2 \Delta^2 y_{-1} + (u^2 - 1)u[\Delta^3 y_{-1} + \Delta^3 y_{-2}] + (u^2 - 1)u^2 \Delta^3 y_{-2} + ...
$$

\n
$$
= 43 + (0.2) \left(\frac{2(-9)}{2}\right) + \frac{0.2^2}{2!} (11) + \frac{(0.2^2 - 1)}{3!} 0.2 + \left[\frac{-18 + 12}{2}\right] \frac{(-0.96)0.04 +}{24} (-30)
$$

\n
$$
= 43 + 0.2(-3.5) + 0.02(11) - (0.16)(0.2)(-3) - 0.0016(-30)
$$

\n
$$
= 43 + (-0.7) + 0.22 + 0.096 + 0.048
$$

\n
$$
= 43 - 0.7 + 0.22 + 0.096 + 0.048
$$

 $=42.664$

6.Following data gives the melting point of an alloy of lead and zinc

Find the melting of the alloy containing 54% of lead, using approx interpolation

Sol: Let $x = 54, x_0 = 50$

 $h=10$ then

$$
u = (x - x0)/h
$$

= $\frac{54-50}{10}$
= $\frac{4}{10}$
= 0.4

Difference table

From table

$$
\Delta y_0 = 20, \, \Delta^2 y_0 = 3, \, \Delta^3 y_0 = 0
$$

By NFIF

$$
Y_{u} = y_{0} + u\Delta y_{0} + u(u-1)\Delta^{2}y_{0} + u(u-1)(u-2)\Delta^{3}y_{0} + u(u-1)(u-2)(u-3)\Delta^{4}y_{0}
$$

= 205 + 0.4(20) + $\frac{(0.4)(0.4 - 1)}{2}$ (3) + $\frac{(0.4)(0.4 - 1)(0.4 - 2)}{6}$ (0)
= 205 + 8 + $\frac{(0.4)(-0.6)}{2}$ (3) + $\frac{(0.4)(-0.6)(-1.6)}{6}$ (0)
= 205 + 8 - $\frac{0.72}{2}$

$$
= 205 + 8 - 0.36
$$

$$
= 212.64
$$

35

REFERENCES

1.NUMERICAL ANALYSIS BY S.RANGANATHAM,M.V.S.S.N. PRASAD, V. RAMESH BABU., S. CHAND (PUBLICATIONS)- 2009

2. INTRODUCTORY METHODS OF NUMERICAL ANALYSIS BY S.S.SASTRY., PRENTICE HALL INDIA (PUBLICATIONS)- 2009

3.NUMERICAL ANALYSIS BY Dr.A.ANJANEYULU., DEEPTHI (PUBLICATIONS)- 1ST EDITION

4. NUMERICAL ANALYSIS BY G.SHANKAR RAO., NEW AGE **INTERNATIONAL (PUBLICATIONS)-2010**

5. FINITE DIFFERENCES AND NUMERICAL ANALYSIS BY H.C.SAXENA., S. CHAND (PUBLICATIONS)

6.A TEXT BOOK OF NUMERICAL ANALYSIS BY HAR SWARUP SHARMA, G.C.SHARMA, S.S.CHAUDHARY., RATTAN PRAKASHAN **MANDIR (PUBLICATIONS)-1982**