CERTIFICATE OF COMPLETION

This is to certify that

Sri Chintalapati Varaprasada Murthy Raju Government Degree College

has successfully completed

CARBON FOOTPRINT & ENERGY AUDIT

The study was completed by Rekhapalli Environmental Solutions & Technologies Pvt Ltd

Averao.

Dr Rekhapalli Srinivasa Rao

Green, Eco & Energy Lead Auditor Certified ISO-14001 Auditor

SRI CHINTALAPATI VARA PRASADA MURTHY RAJU GOVERNMENT DEGREE COLLEGE GANAPAVARAM-534 198 ESTD. 1972 • AFFILIATED TO ADIKAVI NANNAYA UNIVERSITY • ACCREDITED NAAC 'B'

Carbon Footprint and Energy Audit

CONTENTS

04 Acknowledgement

05 Executive Summary

07 Carbon footprint & Opportunities

11 Energy efficiency

17 Conclusion

Acknowledgements

REST Pvt Ltd

Dr Rekhapalli Srinivasa Rao Green, Eco & Energy Lead Auditor Certified ISO-14001 Auditor 31 August 2021

Carbon Footprint & Energy Audit

The REST Pvt Ltd acknowledges with thanks the cooperation extended to our team for completing the study at Sri Chintalapati Varaprasada Murthy Raju Government Degree College (SCHVPMR).

The interactions and deliberations with SCHVPMR team were exemplary and the whole exercise was thoroughly a rewarding experience for us. We deeply appreciate the interest, enthusiasm, and commitment of SCHVPMR team towards environmental sustainability.

We are sure that the recommendations presented in this report will be implemented and the SCHVPMR team will be further improve their environmental performance.

Kind regards

Your sincerely

wikao/

Dr Rekhapalli Srinivasa Rao Green, Eco & Energy Lead Auditor Certified ISO-14001 Auditor REST Pvt Ltd

Executive Summary

The growth of countries across the world is leading to increased consumption of natural resources. There is an urgent need to establish environmental sustainability in every activity we do. In a modern economy, environmental sustainability will play a critical role in the very existence of an organization.

An educational institution is no different. Built environment, especially an educational institution, has a considerable footprint on the environment. Impact on the environment due to energy consumption, water usage and waste generation in an educational institute is prominent. Therefore, there is an imminent need to reduce the overall environmental footprint of the institution.

As an Institution of higher learning, Sri Chintalapati Varaprasada Murthy Raju Government Degree College (SCHVPMR) firmly believes that there is an urgent need to address the environmental challenges and improve their environmental footprint.

True to its belief, SCHVPMR has not yet transformed to solar powered street lights and biogas generator from canteen waste. REST Pvt Ltd team encourages SCHVPMR team for their efforts to increase in non-conventional energy utilization.

Keeping SCHVPMR work in energy efficiency, we recommend the following to be taken by the competent team at SCHVPMR:

Work towards achieving carbon neutrality: NDC emphasizes creating an additional carbon sink of 2.5 to 3 billion tonnes of CO² equivalent through additional forest and tree cover by 2030. SCHVPMR's net carbon emission for the year 2020-21 is 30 MT CO²e. SCHVPMR should focus on energy efficiency, renewable energy, and carbon sequestration as tools that will enable them to offset the present carbon emissions and achieve carbon neutrality.

Installation of solar rooftop: Renewable energy plays a very important role in improving the environmental footprint of an organization. By increasing the share of renewable energy in SCHVPMR's energy portfolio, the overall carbon footprint of the college can be reduced. The roof area available at SCHVPMR is around 1476 sq.mt. For the available area, as an initial step, SCHVPMR could look at installing 25kWp of solar PV which can generate 40,500 units per year. Still the renewable share will also reduce the 15 MT CO²e. For the current assessment year power consumption is 12,000units/year.

Increase the operating power factor: Presently, based on the energy bills, it is understood that the institution maintains a power factor of 0.65. Since the institution pays electricity bills for the KVAH consumed, the lower the power factor, higher is the energy bill for the same KWH consumption. It is recommended to install capacitor banks to improve the power factor and save energy bill. SCHVPMR can save up to Rs. 10,000 per month.

Improve energy efficiency of the college: It is recommended to adopt latest energy efficient technologies for reducing energy consumption in fans, lighting, and air conditioners. We recommend the following projects to be implemented at the earliest:

- Replace conventional 60W ceiling fans with energy efficient BLDC fans of 30W
- Install air conditioners energy savers to save energy in split air conditioners
- Replace all conventional tube lights with LED lamps

Carbon Footprint and Energy Audit

Sri Chintalapati Varaprasada Murthy Raju Government Degree College (SCHVPMR) and REST Pvt Ltd are working together to identify opportunities for improvement in energy efficiency and carbon reduction. This report highlights all the potential proposals for improvement through the audit and analysis of the data provided by SCHVPMR for lighting, air conditioning, ceiling fans, and biogas potential.

The report also details the carbon emissions from college operations. For carbon emissions, scope 1 and scope 2 emissions are calculated from the data submitted by SCHVPMR. The report emphasizes the GHG emission reduction potential possible through a reduction in power consumption.

Submission of Documents

"Carbon footprint and energy audit at SCHVPMR was carried out with the help of data submitted by SCHVPMR team. SCHVPMR team was responsible for collecting all the necessary data and submitting the relevant documents to REST Pvt Ltd for the study.

Note

Carbon footprint and energy audit are based on the data provided by SCHVPMR team and discussions the REST Pvt Ltd team had with SCHVPMR team. The scope of the study does not include the exclusive verification of various regulatory requirements related to environmental sustainability.

REST Pvt Ltd has the right to recall the study if it finds (a) major violation in meeting the environmental regulatory requirements by the location and (b) occurrence of major accidents, leading to significant damage to ecology and environment.

Opportunities for improvement

As a part of the overall environmental improvement study at SCHVPMR, carbon footprint calculations were also carried out. The objective of calculating the carbon footprint of the campus is find the present level of emissions from campus operation and what initiatives that the SCHVPMR can take to offset the emissions. By offsetting the emissions, the college can become carbon neutral in the future by adopting energy efficient processes, increase in renewable energy share and tree plantation.

Carbon footprint calculations:

To help delineate direct and indirect emission sources, improve transparency, and provide utility for different types of organizations and different types of climate policies and business goals, three "scopes" (scope 1, scope 2, and scope 3) are defined for GHG accounting and reporting purposes.

For calculating carbon footprint of the campus, Scope 1 & Scope 2 emissions are being considered. Since day scholars use college provided transportation and hostelers stay in campus, Scope 1 and Scope 2 are the highest contributor to overall emissions. For this reason, Scope 3 is not being calculated.

Scope 1: Direct GHG Emissions

Direct GHG emissions occur from sources that are owned or controlled by the company, for example, emissions from combustion in owned or controlled DG sets, canteen, vehicles, etc.; emissions from chemical production in owned or controlled process equipment. Direct CO2 emissions from the combustion of biomass shall not be included in scope 1 but reported separately.

SCHVPMR Scope 1 emissions for 2020-21:

Sources of Scope 1 emissions in SCHVPMR:

1) Diesel used for college-owned transportation: NIL

2) Diesel consumption for the generator for the assessment year 2020-21: NIL.

3) LPG used for canteen: 2cylinders/year

Scope 2: Electricity Indirect GHG Emissions

Scope 2 accounts for GHG emissions from the generation of purchased electricity consumed by a company. Purchased electricity is defined as electricity that is purchased or otherwise brought into

the organizational boundary of the company. Scope 2 emissions physically occur at the facility where electricity is generated.

SCHVPMR Scope 2 emissions for 2021: Electricity purchased from grid: 12,000 Units on average.

Develop a roadmap to increase contribution of renewable energy in the overall energy consumption

To have a continued focus on increasing renewable energy utilization to 100% which will also lead to reduction in GHG emissions, it is suggested to develop a detailed roadmap on RE utilization. The road map should broadly feature the following aspects -

- Renewable energy potential of SCHVPMR and the maximum offset that can be achieved at SCHVPMR
- Percentage substitution with renewable energy that SCHVPMR wants to achieve in a specified time frame

Key tasks that need to be executed to achieve the renewable energy target

- Specific financial break up for each of the projects highlighting the amount required, available and the utilization status as on date
- A regular review mechanism to ensure progress along the lines of the roadmap should be framed
- The roadmap should also highlight important milestones/key tasks, anticipated bottle SCHVPMR & proposed

Renewable energy roadmap should be used as a base to frame GHG emissions reduction target

It is suggested to use the developed renewable energy roadmap to correlate the GHG reduction that each of the renewable energy project will achieve. This approach will provide a base to set targets for reduction in GHG emissions. The action plan for renewable energy will shoulder the action plan for GHG emissions reduction and work towards achieving carbon neutrality.

Explore the option of other onsite and offsite renewable energy projects

The renewable energy field has been witnessing many private investors due its increased market demand and attractive policies in many states. There are Renewable Energy Independent Power Producers (RE IPPs) who have installed RE based power plants like wind, small hydro and solar PV. GOC can consider having a long-term power purchase agreement with these RE IPPs in purchasing fixed quantity of power for a period of 5 to 10 years.

"Evolve a system to monitor the implementation of various GHG mitigation opportunities SCHVPMR has an action plan to reduce its GHG emissions. SCHVPMR should also evolve a system to monitor the implementation of various GHG mitigation opportunities. It is recommended to use a Gantt chart to mark out the action plan for the activities and track its implementation. Gantt chart will serve as an excellent way to instantly monitor and comprehend all different tasks in one place which would ease tracking of implementation.

Calculation for Installation of 25 kWp of Solar PV in SCHVPMR campus

Renewable energy is one of the important steps to be taken up by the college to reduce their overall carbon footprint. Based on the details provided by SCHVPMR team, based on the total rooftop area availability of 1476sq.mt area, there is a scope to install the roof top solar PV. However, for this report calculation, only 25 kWp capacity is considered.

A renewable energy capacity of 25 kW of solar panel may be installed can generate 40,500 units of electricity per year. Additionally, 25 kWp of solar rooftop can offset 33 MT CO2e per annum. RESCO model for solar rooftop installation:

A Renewable Energy Service Company (RESCO) is an ESCO Energy service company which provides energy to the consumers from renewable energy sources. RESCO or BOOT model is about pay as Ju consume the electricity.

- Solar Power Plant is owned by the RESCO or Energy Company
- Customer must sign a Power purchase Agreement (PPA) with actual investor at mutually agreed tariff and tenure
- Customer only pays for electricity consumed
- RESCO developer is responsible for its annual operations & maintenance (O&M)
- The RESCO gets the benefit by selling the surplus power generated to the DISCOM

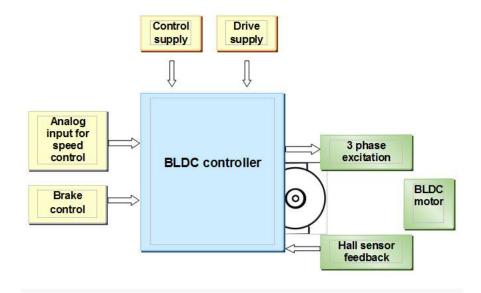
Source: www.bluebirdsolar.com

Energy Efficiency

Annual energy consumption of SCHVPMR campus is 12000 units per year. There are major blocks in the campus which consumes energy for their operation. Major energy consumers are:

1. Fans

2. Air conditioners


Replace conventional tube lights with LED lamps

Replace Conventional Ceiling Fans with Energy Efficient BLDC Fans

During the Energy Audit at SCHVPMR, a detailed study was carried out to identify the potential for replacing the existing ceiling fans with BLDC super fans. There are 407 fans operating in SCHVPMR campus.

Instead of conventional ceiling fans, latest technology BLDC fans which consume only 30W can be installed in the newly constructed building. A brushless DC (BLDC) motor is a synchronous electric motor powered by direct-current (DC) electricity and having an electronic commutation system, rather than a mechanical commutator and brushes. A BLDC motor has an external armature called the stator, and an internal armature called the rotor.

The rotor can usually be a permanent magnet. Typical BLDC motor-based ceiling fan has much Letter efficiency and excellent constant RPM control as it operates out of fixed DC voltage. The proposed BLDC motor and the control electronics operate out of 24V DC through an SMPS having input AC which can vary from 90V to 270V. The operational block diagram of a BLDC motor is as follows:

With the replacement of existing ceiling fans with Super Fans the energy consumption is likely to reduce by 55% per fixture. Considering 100 fans being replaced with super-efficient BLDC fans, 3.50 kW can be saved. Considering the average operating hours to be 2000 and unit cost as Rs.

7.50, the calculations are as follows:

Total no. of fans in college	:	104
No. of fans considered for calculation	:	50 (First cycle of change)
Energy consumption per fan	:	70 W
Total energy consumption of fans	:	70W X 104 fans
	:	7280kW
super-efficient BLDC fans energy consumpt	ion:	30 W
Savings from 70W to 30 W	:	55%
Total savings in fans energy consumption	:	55% of 7kW
	:	3.5 kW
Savings per year	:	3.5 kW x 2000 hrs X Rs. 7.50/unit
	:	Rs. 0.75 Lakhs
Investment	:	Rs. 2, 50,000
	:	52 months
Annual emission reduction potential	:	6.00 T CO2

Install Air conditioners energy saver for spilt air conditioners:

Present status: As per the data obtained from SCHVPMR team, the campus has majorly 1.5 TR units installed. There are 3 spilt air conditioners installed.

Recommendation:

We recommend installing "Airtron", an energy saver that can be installed at every individual unit of AC. The Airtron is the world's most advanced AC SAVER, with all the controls of a Precision AC. The Airtron's dual sensors reference the Room and Coil & Ambient Temp, and uses complex, multiple algorithms in a "closed-loop circuit" to reduce the Compressor Run-Time, to ensure the high savings while maintaining and displaying the Set temperature accurately. The Airtron is Programmable for geographical location and climate and adapts automatically to changes in season and ambient conditions.

This unique device has been developed on Patent-Published technology and approved by leading MNC'S, PSU'S and Govt. Departments. The Airtron is validated by EESL (Energy Efficiency Services Ltd.), Ministry of Power, Government of India, for 44% savings. The Airtron has been validated on all AC's- Inverters, 5 Star, Splits, Multi-Splits, Packages, ducts, Windows, Cassettes from 1.0 - 20.0 TR, LG Itd, Videocon Ltd, Tata Communications, L&T, Nestle, Ashok Leyland etc. The AIRTRON comes with a Remote for setting the Room Temperature, and in a Non-Flammable Polycarbonate Enclosure, with SMPS Power Supply, to tolerate w ide Voltage and Current fluctuations, Surges, Spikes and Sags.

In our case, Airtron installation can reduce the energy consumption of each fixture by 15% on a conservative basis. For a total energy consumption, for air conditioners, as 20 units per hour, 3 units per hour can be saved. It is recommended to install Airtron energy saver in a phase wise manner preferably in the batches of 10 units.

Saving Calculation: Considering the operating hours to be 2000 and unit cost as Rs 7.50/-.

- Monetary annual savings : Rs 45,000/-
- Total investment : Rs 80,000/-
- Payback period : 22 months (2 years)
- Annual emission reduction potential: 4.92 MT CO2

Replace Conventional Lamps with LED Lamps

As per the data submitted, the total number of all the lighting fixtures installed are

a) Lights	:	65x50Watts =3250 Watts
b) Tube lights	:	65x20Watts =1300Watts.

Under failure replacement policy, at least 30 lamps can be changed in the first year.

The campus should be keen in harnessing the day lighting available thereby reducing the use of artificial lighting.

Based on the occupancy, monitoring should be ensured to reduce excessive consumption of energy.

Major savings in energy through lighting fixtures can be achieved by replacing all the above existing fixtures with LED's meeting the required LUX levels. The LED's being less energy consuming while maintaining the equivalent lux is the more sustainable option. The replacement of lighting fixtures should be done as per failure replacement policy i.e. change the old fixture with LED when it fails

Advantages of LED

• Lower energy consumption: The energy consumption of LEDs is low when compared to the other conventional sources for the same amount of Lumen output.

Performance comparison of different type lights

Type of Lamp	Lumen/Watt	CRI	Life hours
HPSV lamps	90-120	Bad (22-25)	15,000-20,000
Metal Halide lamps	65-100	Good (65-90)	18,000
LED lamps	100-150	Very Good (>80)	10,000-12,000

• **High S/P ratio:** LEDs have higher scotopic/photopic ratio (S/P ratio). The eye has two primary light sensing cells called rods and cones - cones function in day light and process visual information whereas rods function in night light. The cone dominated vision is called photopic and the rod dominated vision is called scotopic. The S/P ratio indicates the measure of light that excites rods compared to the light that excites cones. In office environments, illumination is more effective if the S/P ratio is high as it is under scotopic region. LEDs hence are ideally suited for these applications as they have a high S/P ratio.

- **Longer life-time:** LEDs have longer life time of around 1,00,000 hours. This is equivalent to 11years of continuous operation or 22 years of 50% operation.
- **Faster switching:** LED lights reach its brightness instantly upon switching and can frequently be switched on/off without reducing the operational life expectancy.
- Greater durability and reliability: As LEDs are solid-state devices and uses semi-conductor material; they are sturdier than conventional sources that use filaments or glass. LEDs can also withstand shock, extreme temperatures and vibration as they don't have fragile materials as components.
- **Good Colour Rendering Index (CRI):** The colour rendering index, i.e., measure of a light sources' ability to show objects as perceived under sunlight is high for LEDs. The CRI of natural sunlight is 100 and LEDs offer CRI of 80 and above.

LED offers more focused light and reduced glare. Moreover, it does not contain pollutants like mercury. LED technology is highly compatible for solar lighting as low-voltage power supply is enough for LED illumination.

Calculations are as follows:	
------------------------------	--

Existing Lighting fixtures	36W
Existing power consumption(kW)	4.5kW (130lamps)
Proposed LED wattage (W)	15
LED power consumption (kW)	1.95kW
Energy saving (kW)	2.55kW
Opearting hours	2000

Annual monetary savings	:	Rs 38,250/-
Investment needed	:	Rs 90,000/-
Payback period	:	2.5 years
Annual Emission reduction potenti	al :	4.18MT of CO2.

Conclusion

SCHVPMR has initiated few energy efficiency activities in their campus. While REST Pvt Ltd appreciates the SCHVPMR team for their efforts, we would like to emphasize that opportunity exists further reduce the energy consumption. Installation of renewable energy is to be given major focus. RESCO model can be adopted to install renewable energy without upfront capital investment. We in REST Pvt Ltd are sure that all the recommendations mentioned in the report will be implemented by SCHVPMR team and the overall environmental performance of the campus will be improved.

GREEN AUDIT REPORT (2020-2021)

SCHVPMR GOVERNMENT DEGREE COLLEGE GANAPAVARAM

Acknowledgement

Green Audit Assessment Team thanks the SCHVPMR GOVERNMENT DEGREE COLLEGE for assigning this important work of Green Audit. We appreciate the cooperation extended to our team during the entire process. Our special thanks are due to the Principal and Team of colleagues for giving us necessary inputs to carry out this very vital exercise of Green Audit.

We are also thankful to the IQAC Coordinator and other staff members who were actively involved while collecting the data and conducting field measurements.

Table of Contents

Introduction
1.1 About the College
2. Objectives of the Study
3. Methodology
4. Observations
4.1. Physical structure
4.2. Water Use and Management
4.3. Energy Use and Conservation
4.4. Waste Generation
4.5.Green Area
5. Recommendations
6. Conclusions.

1. Introduction

The rapid urbanization and economic development at local, regional and global level has led to several environmental and ecological crises. On this background it becomes essential to adopt the system of the Green Campus for the institute which will lead for sustainable development. We at SCHVPMR GOVERNMENT DEGREE COLLEGE have taken the initiative to make significant contributions in creating a sustainable eco friendly environment. Green Audit can be defined as systematic identification, quantification, recording, reporting and analysis of components of environmental diversity. The 'Green Audit' aims to analyze environmental practices within and outside the college campus, which will have an impact on the eco-friendly ambience. Green Audit helps us to identify and mitigate the ill effects through a sustained and seamless application of remedial measures identified during the audit, to replenish the environment and make the surrounding conducive for a healthy living. An interdisciplinary board of SCHVPMR GOVERNMENT DEGREE COLLEGE is formed with specific goals towards environmental sustenance in the campus. The total area of the campus is 3.5 acres. SCHVPMR GOVERNMENT DEGREE COLLEGE from its time of establishment to date maintains a well developed play ground with flora and fauna to maintain the ecological balance and also an eye feast to stakeholders.

As a major step towards controlling greenhouse gasses, the Principal of SCHVPMR GOVERNMENT DEGREE COLLEGE encourages NSS students to conduct awareness campaigns on plantation under the" JanmaBhoomi" program, a plantation drive initiated by the Govt. of Andhra Pradesh State. Under the audit process the II&III B.Sc. Life Sciences group students and Botany faculty members actively participated in surveying the plant species in the campus.

2. Objectives of the Study

- 1. To introduce and aware students to real concerns of the environment and its Sustainability.
- 2. To identify, verify and assess the available resources and their management at the college.
- 3. To share the findings of the audit among the student, staff and Management

fraternity to increase the awareness of ecological imbalances and their ill effects.

4. To identify avenues to save energy, water resources and effective waste management to reduce losses due to the usage of these resources

GREEN AUDIT COMMITTEE:

NAME	DESIGNATION
Dr. M. Syambab	Convenor, Principal, SCHVPMR GDC Ganapavaram
Dr. Ramudu Machavarapu	Assistant Professor of Physics (Ad Hoc) NIT AP, Tadepalligudem
Dr.Ch.CHaitanya	Assistant Professor of Botany, SRBGNR(A)Khammam, Telangana
Sri. NVNB Srinivas Rao	Lecturer in Chemistry, DRG GDC Tadepalligudem
Dr. V. Sandhya	Lecturer in Zoology, SCHVPMR GDC Ganapavaram

3. Methodology

In order to perform green audit, the methodology included collection of information related to College Building, laboratories, office- based environmental impacts like built-up area, utility bills, energy-saving devices and IT equipments etc. Hence, physical inspection of the campus, observation and review of the documentation, interviewing key persons were carried out. This information needs to be documented and tabulated for arriving at a clear picture of the Institution's annual greenhouse gas emissions and impact of the reduction measures to be undertaken.

Green Audit Process:

- Teams were formulated with clear instructions and scope of the Audit to collect the data.
- Documentation of physical evidence based on the verification and valuation of the resources and assets.
- Analysis of the data to identify the areas of improvement
- Discussion with subject matter experts and relaying the information to the stakeholders for further analysis and its implementations with action plans to meet the desired standards.

4. Observations

4.1 Physical Structure

The college campus is spread across 3.6 acres of land on Tadepalligudem road. With a built-up area of 1476 square meters, the college is functioning in its own pucca building with two floors (G+1) and RUSA-supported 2nd floor is under construction. Slab work for the entire floor is completed and three computer labs are already arranged there. There are 9 classrooms for conventional teaching and 2 ICT-enabled classrooms, including one smart room, one Virtual Class room on the 1st floor.

Classrooms	9
Staff rooms	1
Laboratories	6
Seminar Hall	1
Library	1
Administrative Office	1
Principal's Office	1
Washrooms	10

4.2 Water Use and Management

The study observed that Municipal connection is the major source of water in college. Water is used for drinking purposes, toilets and gardening. There is one RO plant on the premises that caters to the drinking water requirements. The waste water from the RO plants is redirected for cleaning purposes, watering plants and sometimes the open ground to prevent dust from infiltrating into the air. During the survey, no loss of water is observed, neither by any leakages, or by over flow of water from overhead tanks. On an average the total use of water in the college is 1700 L/day, which include domestic, gardening and drinking purposes. One rain water harvesting unit is also functional for recharging ground water level.

Water Conservation Strategies:

• Water consumption in laboratories is minimized by closing the main valves to avoid any kind of leakage.

• Used organic solvents after physical experimentation are not let into the drains; they are recovered and reused for cleaning.

• Organic compounds prepared in the chemistry lab by BSC students are bottled and issued during the subsequent semester for organic compound analysis.

4.3 Energy Use and Conservation

This indicator addresses energy consumption, energy sources, energy monitoring, lighting, appliances, natural gas and vehicles. Energy use is clearly an important aspect of campus sustainability and thus requires no explanation for its inclusion in the assessment.

Energy source utilized by the campus is electricity only. Total average energy consumption is determined as 507 KWH/month. The entire campus including common facility centers are equipped with tube lights and bulbs. Campus administration runs a switch–off drill on a regular basis.

Annexure: 1

S.No	ITEMS/ Equipments	Numbers
1	Tubes & Bulbs	65
2	Fan	104
3	LED Bulbs	nil
4	Air Conditioners	3

GREEN AUDIT REPORT:

2020-21

SCHVPMR	GOVERNMENT	DEGREE	COLLEGE
GANAPAVA	RAM		

5	Projector	1
6	Computers	94
7	Printers	9
8	Other Electrical equipments/	
	gadgets	
	i. Fridge	3
	ii. Oven	nil
	iii. Freezer	nil
	iv. Amplifier	nil
	v. Microwave	0
	vi. Geyser	0
	vii. LCD/Television	6
	viii. Ice cube maker	0
	ix. Ro plant	1
	x. Water cooler	2
	xi. Cyclostyling Machine	0
	xii. UPS	1
	xiii. CCTV SYSTEM	1
	Total: Other Electrical	8
	equipments/ gadgets	

Transportation is a necessary evil in our society. The institute does not have any self owned buses. The teaching staff, students and members of the office and support staff use their own or public transport for commuting to the college from their respective places of residence. Students staying close by are encouraged to walk or cycle to the institute. Approximately 60% students avail the Government provided bus services to commute to the college at a concessional rate. The office and the staff and students observe no vehicle day on every second Tuesday to promote a clean and green environment.

4.4 Waste Generation and disposal

This indicator addresses waste production and disposal of different wastes like paper, food, plastic, biodegradable, construction, glass, dust etc. and recycling. Waste generation

from tree droppings is a major solid waste generated in the campus. These dried leaves were collected and placed in compost pits for compost preparation. The waste is segregated at the source by providing separate dustbins for Biodegradable and Plastic waste.

Single sided used papers reused for writing and printing in all departments and recently both side printing is carried out as per requirements. Very less plastic waste is generated by the department, office, garden etc. Metal waste and wooden waste is stored and given to authorized scrap agents for further processing.

The solid waste is collected by the municipal corporation and disposed of by their methods. E-waste generated in the campus is very less in quantity. Administration conducts the awareness programs regarding E-waste Management with the help of various departments. The E-waste and defective item from the computer laboratory is being stored properly. The institution has decided to contact approved E-waste management and disposal facilities in order to dispose of E-waste in a scientific manner.

4.5 Green Area

This includes the plants, greenery and sustainability of the campus to ensure that the buildings conform to green standards. Various tree plantation programs are being organized at the college campus with the help of NSS (National Service Scheme) unit, Department of Botany and the Eco Club. This program helps in encouraging an eco-friendly environment which provides pure oxygen within the institute and awareness among villagers.

Annexure: 2 FLORA

Plants type	Total Nos
Tree	40
Shrubs	30
Climbers	nil
Total	70

Annexure: 3 Water Management in the College

Sources of Water in the College:	Municipal, Tank water Supply
Storage Facility	Sump facility

Annexure:4 Transportation management

	Own	Public	By	
Particulars	Transport	Transport	walk	Total
Number of students	25	210	115	345
Number of Teaching & non	18	3	3	24
teaching staff	10	5	5	24
Total	33	223	103	359

Annexure:5 Waste management

Type of Waste		
Dry Waste	1-2kgs	
Wet Waste	>1 kgs per day	
Plastic Waste	>1 kgs per day	
E waste	>1kg per day	
Total	≤3-4 kgs per day	

5.Recommendations

- To dig one more compost pit in the campus
- To encourage eco-friendly dustbins.
- To grow herbs that are medicinally important and also purify the air
- To establish a solar panel on the campus

6. Conclusions

Considering the fact that the institution is located in the mandal headquarters, there is significant environmental awareness for both faculty and students. The environmental awareness initiatives are substantial. Besides, environmental awareness programmes initiated by the administration shows how the campus is going green. Few recommendations are added to curb the menace of waste management using eco-friendly and scientific techniques. Also installation of a Solar Panel (renewable energy source) would minimize the energy consumption, this may lead to a prosperous future in the context of Green Campus & thus

sustainable environment and community development.

Annexure 6: List of plants growing in College premises.

Name of the Tree	Scientific Name of the Tree	Family
Jackfruit	Artocarpus heterophyllus	Moraceae
Neem tree	Azadirachta indica	Meliaceae
Palmyra palm	Borassus flabellifer	Arecaceae
Garden red sandal	pterocarpus santalinus	Santalaceae
Carrot grass	Parthenium hysterophorus	Asteraceae
Areca palm	Dypsis lutescens	Arecaceae
Ice cream bean	Inga edulis	Fabaceae
Tamarind pulp	Dialium indum	Fabaceae
White goose foot	Chenopodium album	Amaranthaceae
Blackboard tree	Alstonia scholaris	Apocynaceae
Red wisteria	Sesbania grandiflora	Fabaceae
French broom	Genista monspessulana	Fabaceae
Jurema preta	Mimosa tenuiflora	Fabaceae
Monkey bread	piliostigma thonningii	Fabaceae
River red gum	Eucalyptus camaldulensis	Myrtaceae
Black Siris	Albizia odoratissima	Fabaceae
Perfume tree	Cananga odorata	Annonaceae
Argentina mosquito tree	Proposis alba thornless	Fabaceae
Syrian oregano	Origanum syriacum	Lamiaceae

GREEN AUDIT REPORT

(2019-2020)

SCHVPMR GOVERNMENT DEGREE COLLEGE GANAPAVARAM

Acknowledgement

Green Audit Assessment Team thanks the SCHVPMR GOVERNMENT DEGREE COLLEGE for assigning this important work of Green Audit. We appreciate the cooperation extended to our team during the entire process. Our special thanks are due to the Principal and Team of colleagues for giving us necessary inputs to carry out this very vital exercise of Green Audit.

We are also thankful to the IQAC Coordinator and other staff members who were actively involved while collecting the data and conducting field measurements.

Table of Contents

Introduction
1.1 About the College
2. Objectives of the Study
3. Methodology
4. Observations
4.1. Physical structure
4.2. Water Use and Management
4.3. Energy Use and Conservation
4.4. Waste Generation
4.5.Green Area
5. Recommendations
6. Conclusions

1. Introduction

The rapid urbanization and economic development at local, regional and global level has led to several environmental and ecological crises. On this background it becomes essential to adopt the system of the Green Campus for the institute which will lead for sustainable development. We at SCHVPMR GOVERNMENT DEGREE COLLEGE have taken the initiative to make significant contributions in creating a sustainable eco friendly environment. Green Audit can be defined as systematic identification, quantification, recording, reporting and analysis of components of environmental diversity. The 'Green Audit' aims to analyze environmental practices within and outside the college campus, which will have an impact on the eco-friendly ambience. Green Audit helps us to identify and mitigate the ill effects through a sustained and seamless application of remedial measures identified during the audit, to replenish the environment and make the surrounding conducive for a healthy living. An interdisciplinary board of SCHVPMR GOVERNMENT DEGREE COLLEGE is formed with specific goals towards environmental sustenance in the campus. The total area of the campus is 3.5 acres. SCHVPMR GOVERNMENT DEGREE COLLEGE from its time of establishment to date maintains a well developed play ground with flora and fauna to maintain the ecological balance and also an eye feast to stakeholders.

As a major step towards controlling greenhouse gasses, the Principal of SCHVPMR GOVERNMENT DEGREE COLLEGE encourages NSS students to conduct awareness campaigns on plantation under the" JanmaBhoomi" program, a plantation drive initiated by the Govt. of Andhra Pradesh State. Under the audit process the II&III B.Sc. Life Sciences group students and Botany faculty members actively participated in surveying the plant species in the campus.

2. Objectives of the Study

- 1. To introduce and aware students to real concerns of the environment and its Sustainability.
- 2. To identify, verify and assess the available resources and their management at the college.
- 3. To share the findings of the audit among the student, staff and Management

fraternity to increase the awareness of ecological imbalances and their ill effects.

4. To identify avenues to save energy, water resources and effective waste management to reduce losses due to the usage of these resources

GREEN AUDIT COMMITTEE:

NAME	DESIGNATION	
Dr. M. Syambab	Convenor, Principal, SCHVPMR GDC Ganapavaram	
Dr. Ramudu Machavarapu	Assistant Professor of Physics (Ad Hoc) NIT AP, Tadepalligudem	
Dr.Ch.CHaitanya	Assistant Professor of Botany, SRBGNR(A)Khammam, Telangana	
Sri. NVNB Srinivas Rao	Lecturer in Chemistry, DRG GDC Tadepalligudem	
Dr. V. Sandhya	Lecturer in Zoology, SCHVPMR GDC Ganapavaram	

3. Methodology

In order to perform green audits, the methodology included collection of information related to College Building, laboratories, office- based environmental impacts like built-up area, utility bills, energy-saving devices and IT equipment etc. Hence, physical inspection of the campus, observation and review of the documentation, interviewing key persons were carried out. This information needs to be documented and tabulated for arriving at a clear picture of the Institution's annual greenhouse gas emissions and impact of the reduction measures to be undertaken.

Green Audit Process:

- Teams were formulated with clear instructions and scope of the Audit to collect the data.
- Documentation of physical evidence based on the verification and valuation of the resources and assets.
- ✤ Analysis of the data to identify the areas of improvement
- Discussion with subject matter experts and relaying the information to the stakeholders for further analysis and its implementations with action plans to meet the desired standards.

4. Observations

4.1 Physical Structure

The college campus is spread across 3.6 acres of land on Tadepalligudem road. With a built-up area of 1476 square meters, the college is functioning in its own pucca building with two floors (G+1) and RUSA-supported 2nd floor is under construction. Slab work for the entire floor is completed and three computer labs are already arranged there. There are 9 classrooms for conventional teaching and 2 ICT-enabled classrooms, including one smart room, one Virtual Class room on the 1st floor.

Classrooms	9
Staff rooms	1
Laboratories	6
Seminar Hall	1
Library	1
Administrative Office	1
Principal's Office	1
Washrooms	10

4.2 Water Use and Management

The study observed that Municipal connection is the major source of water in college. Water is used for drinking purposes, toilets and gardening. There is one RO plant on the premises that caters to the drinking water requirements. The waste water from the RO plants is redirected for cleaning purposes, watering plants and sometimes the open ground to prevent dust from infiltrating into the air. During the survey, no loss of water is observed, neither by any leakages, or by over flow of water from overhead tanks. On an average the total use of water in the college is 1700 L/day, which include domestic, gardening and drinking purposes. One rain water harvesting unit is also functional for recharging ground water level.

Water Conservation Strategies:

• Water consumption in laboratories is minimized by closing the main valves to avoid any kind of leakage.

• Used organic solvents after physical experimentation are not let into the drains; they are recovered and reused for cleaning.

• Organic compounds prepared in the chemistry lab by BSC students are bottled and issued during the subsequent semester for organic compound analysis.

4.3 Energy Use and Conservation

This indicator addresses energy consumption, energy sources, energy monitoring, lighting, appliances, natural gas and vehicles. Energy use is clearly an important aspect of campus sustainability and thus requires no explanation for its inclusion in the assessment.

Energy source utilized by the campus is electricity only. Total average energy consumption is determined as 1538 KWH/month. The entire campus including common facility centers are equipped with tube lights and bulbs. Campus administration runs a switch–off drill on a regular basis.

Annexure: 1

S.No	ITEMS/ Equipments	Numbers
1	Tubes & Bulbs	65
2	Fan	104
3	LED Bulbs	nil
4	Air Conditioners	3

GREEN AUDIT REPORT:

2019-20

SCHVPMR	GOVERNMEN	DEGREE	COLLEGE
GANAPAVA	RAM		

1000	GANAPAVARAM		
5	Projector	1	
6	Computers	94	
7	Printers	9	
8	Other Electrical equipments/		
	gadgets		
	i. Fridge	3	
	ii. Oven	nil	
	iii. Freezer	nil	
	iv. Amplifier	nil	
	v. Microwave	0	
	vi. Geyser	0	
	vii. LCD/Television	6	
	viii. Ice cube maker	0	
	ix. Ro plant	1	
	x. Water cooler	2	
	xi. Cyclostyling Machine	0	
	xii. UPS	1	
	xiii. CCTV SYSTEM	1	
	Total: Other Electrical	8	
	equipments/ gadgets		

Transportation is a necessary evil in our society. The institute does not have any self owned buses. The teaching staff, students and members of the office and support staff use their own or public transport for commuting to the college from their respective places of residence. Students staying close by are encouraged to walk or cycle to the institute. Approximately 60% students avail the Government provided bus services to commute to the college at a concessional rate. The office and the staff and students observe no vehicle day on every second Tuesday to promote a clean and green environment.

4.4 Waste Generation and disposal

This indicator addresses waste production and disposal of different wastes like paper, food, plastic, biodegradable, construction, glass, dust etc. and recycling. Waste generation

from tree droppings is a major solid waste generated in the campus. These dried leaves were collected and placed in compost pits for compost preparation. The waste is segregated at the source by providing separate dustbins for Biodegradable and Plastic waste.

Single sided used papers reused for writing and printing in all departments and recently both side printing is carried out as per requirements. Very less plastic waste is generated by the department, office, garden etc. Metal waste and wooden waste is stored and given to authorized scrap agents for further processing.

The solid waste is collected by the municipal corporation and disposed of by their methods. E-waste generated in the campus is very less in quantity. Administration conducts the awareness programs regarding E-waste Management with the help of various departments. The E-waste and defective item from the computer laboratory is being stored properly. The institution has decided to contact approved E-waste management and disposal facilities in order to dispose of E-waste in a scientific manner.

4.5 Green Area

This includes the plants, greenery and sustainability of the campus to ensure that the buildings conform to green standards. Various tree plantation programs are being organized at the college campus with the help of NSS (National Service Scheme) unit, Department of Botany and the Eco Club. This program helps in encouraging an eco-friendly environment which provides pure oxygen within the institute and awareness among villagers.

Annexure: 2 FLORA

Plants type	Total Nos
Tree	40
Shrubs	30
Climbers	nil
Total	70

Annexure: 3 Water Management in the College

Sources of Water in the College:	Municipal, Tank water Supply
Storage Facility	Sump facility

Annexure:4 Transportation management

	Own	Public	By	
Particulars	Transport	Transport	walk	Total
Number of students	35	240	120	395
Number of Teaching & non	18	3	3	24
teaching staff	10	5	5	24
Total	33	223	103	359

Annexure:5 Waste management

Type of Waste		
Dry Waste	2-3 kgs	
Wet Waste	1-2 kgs per day	
Plastic Waste	1.5kgs per day	
E waste	>1kg per day	
Total	≤ 8 kgs per day	

5.Recommendations

- To dig one more compost pit in the campus
- To encourage eco-friendly dustbins.
- To grow herbs that are medicinally important and also purify the air
- To establish a solar panel on the campus

6. Conclusions

Considering the fact that the institution is located in the mandal headquarters, there is significant environmental awareness for both faculty and students. The environmental awareness initiatives are substantial. Besides, environmental awareness programmes initiated by the administration shows how the campus is going green. Few recommendations are added to curb the menace of waste management using eco-friendly and scientific techniques. Also installation of a Solar Panel (renewable energy source) would minimize the energy consumption, this may lead to the prosperous future in the context of Green Campus & thus

sustainable environment and community development.

Annexure 6: List of plants growing in College premises.

Name of the Tree	Scientific Name of the Tree	Family
Jackfruit	Artocarpus heterophyllus	Moraceae
Neem tree	Azadirachta indica	Meliaceae
Palmyra palm	Borassus flabellifer	Arecaceae
Garden red sandal	pterocarpus santalinus	Santalaceae
Carrot grass	Parthenium hysterophorus	Asteraceae
Areca plam	Dypsis lutescens	Arecaceae
Ice cream bean	Inga edulis	Fabaceae
Tamarind pulp	Dialium indum	Fabaceae
White goose foot	Chenopodium album	Amaranthceae
Blackboard tree	Alstonia scholaris	Apocynaceae
Red wisteria	Sesbania grandiflora	Fabaceae
French broom	Genista monspessulara	Fabaceae
Jurema preta	Mimosa tenuiflora	Fabaceae
Monkey bread	piliostigma thonnigii	Fabaceae
River red gum	Eucalyptus camaldulensis	Myrtaceae
Black Siris	Albizia odoratissima	Fabaceae
Perfume tree	Cananga odarata	Annonaceae
Argentina mosquito tree	Proposis alba thornless	Fabaceae
Syrian oregano	Origanum syriacum	Lamiaceae

^^^^^

GREEN AUDIT REPORT

(2018-2019)

SCHVPMR GOVERNMENT DEGREE COLLEGE GANAPAVARAM

Acknowledgement

Green Audit Assessment Team thanks the SCHVPMR GOVERNMENT DEGREE COLLEGE for assigning this important work of Green Audit. We appreciate the cooperation extended to our team during the entire process. Our special thanks are due to the Principal and Team of colleagues for giving us necessary inputs to carry out this very vital exercise of Green Audit.

We are also thankful to the IQAC Coordinator and other staff members who were actively involved while collecting the data and conducting field measurements.

Table of Contents

Introduction
1.1 About the College
2. Objectives of the Study
3. Methodology
4. Observations
4.1. Physical structure
4.2. Water Use and Management
4.3. Energy Use and Conservation
4.4. Waste Generation
4.5.Green Area
5. Recommendations
6. Conclusions

1. Introduction

The rapid urbanization and economic development at local, regional and global level has led to several environmental and ecological crises. On this background it becomes essential to adopt the system of the Green Campus for the institute which will lead for sustainable development. We at SCHVPMR GOVERNMENT DEGREE COLLEGE have taken the initiative to make significant contributions in creating a sustainable eco friendly environment. Green Audit can be defined as systematic identification, quantification, recording, reporting and analysis of components of environmental diversity. The 'Green Audit' aims to analyze environmental practices within and outside the college campus, which will have an impact on the eco-friendly ambience. Green Audit helps us to identify and mitigate the ill effects through a sustained and seamless application of remedial measures identified during the audit, to replenish the environment and make the surrounding conducive for a healthy living. An interdisciplinary board of SCHVPMR GOVERNMENT DEGREE COLLEGE is formed with specific goals towards environmental sustenance in the campus. The total area of the campus is 3.5 acres. SCHVPMR GOVERNMENT DEGREE COLLEGE from its time of establishment to date maintains a well developed play ground with flora and fauna to maintain the ecological balance and also an eye feast to stakeholders.

As a major step towards controlling greenhouse gasses, the Principal of SCHVPMR GOVERNMENT DEGREE COLLEGE encourages NSS students to conduct awareness campaigns on plantation under the" JanmaBhoomi" program, a plantation drive initiated by the Govt. of Andhra Pradesh State. Under the audit process the II&III B.Sc. Life Sciences group students and Botany faculty members actively participated in surveying the plant species in the campus.

2. Objectives of the Study

- 1. To introduce and aware students to real concerns of the environment and its Sustainability.
- 2. To identify, verify and assess the available resources and their management at the college.
- 3. To share the findings of the audit among the student, staff and Management

fraternity to increase the awareness of ecological imbalances and their ill effects.

4. To identify avenues to save energy, water resources and effective waste management to reduce losses due to the usage of these resources

GREEN AUDIT COMMITTEE:

NAME	DESIGNATION
Sri. P. Madhu Raju	Convenor, Principal (FAC), SCHVPMR GDC Ganapavaram
Dr. Ramudu Machavarapu	Assistant Professor of Physics (Ad Hoc) NIT AP, Tadepalligudem
Dr.Ch.CHaitanya	Assistant Professor of Botany, SRBGNR(A)Khammam, Telangana
Sri. NVNB Srinivas Rao	Lecturer in Chemistry, DRG GDC Tadepalligudem
Dr. V. Sandhya	Lecturer in Zoology, SCHVPMR GDC Ganapavaram

3. Methodology

In order to perform green audits, the methodology included collection of information related to College Building, laboratories, office- based environmental impacts like built-up area, utility bills, energy-saving devices and IT equipment etc. Hence, physical inspection of the campus, observation and review of the documentation, interviewing key persons were carried out. This information needs to be documented and tabulated for arriving at a clear picture of the Institution's annual greenhouse gas emissions and impact of the reduction measures to be undertaken.

Green Audit Process:

- Teams were formulated with clear instructions and scope of the Audit to collect the data.
- Documentation of physical evidence based on the verification and valuation of the resources and assets.
- ✤ Analysis of the data to identify the areas of improvement
- Discussion with subject matter experts and relaying the information to the stakeholders for further analysis and its implementations with action plans to meet the desired standards.

4. Observations

4.1 Physical Structure

The college campus is spread across 3.6 acres of land on Tadepalligudem road. With a built-up area of 1476 square meters, the college is functioning in its own pucca building with two floors (G+1) and RUSA-supported 2nd floor is under construction. Slab work for the entire floor is completed and three computer labs are already arranged there. There are 9 classrooms for conventional teaching and 2 ICT-enabled classrooms, including one smart room, one Virtual Class room on the 1st floor.

Classrooms	9
Staff rooms	1
Laboratories	6
Seminar Hall	1
Library	1
Administrative Office	1
Principal's Office	1
Washrooms	10

4.2 Water Use and Management

The study observed that Municipal connection is the major source of water in college. Water is used for drinking purposes, toilets and gardening. There is one RO plant on the premises that caters to the drinking water requirements. The waste water from the RO plants is redirected for cleaning purposes, watering plants and sometimes the open ground to prevent dust from infiltrating into the air. During the survey, no loss of water is observed, neither by any leakages, or by over flow of water from overhead tanks. On an average the total use of water in the college is 1700 L/day, which include domestic, gardening and drinking purposes. One rain water harvesting unit is also functional for recharging ground water level.

Water Conservation Strategies:

• Water consumption in laboratories is minimized by closing the main valves to avoid any kind of leakage.

• Used organic solvents after physical experimentation are not let into the drains; they are recovered and reused for cleaning.

• Organic compounds prepared in the chemistry lab by BSC students are bottled and issued during the subsequent semester for organic compound analysis.

4.3 Energy Use and Conservation

This indicator addresses energy consumption, energy sources, energy monitoring, lighting, appliances, natural gas and vehicles. Energy use is clearly an important aspect of campus sustainability and thus requires no explanation for its inclusion in the assessment.

Energy source utilized by the campus is electricity only. Total average energy consumption is determined as 6735 KWH/month. The entire campus including common facility centers are equipped with tube lights and bulbs. Campus administration runs a switch–off drill on a regular basis.

Annexure: 1

S.No	ITEMS/ Equipments	Numbers
1	Tubes & Bulbs	65
2	Fan	104
3	LED Bulbs	nil
4	Air Conditioners	3

GREEN AUDIT REPORT:

2018-19

SCHVPMR	GOVERNMENT	DEGREE	COLLEGE
GANAPAVA	RAM		

	APAVARAM	
5	Projector	1
6	Computers	94
7	Printers	9
8	Other Electrical equipments/	
	gadgets	
	i. Fridge	3
	ii. Oven	nil
	iii. Freezer	nil
	iv. Amplifier	nil
	v. Microwave	0
	vi. Geyser	0
	vii. LCD/Television	6
	viii. Ice cube maker	0
	ix. Ro plant	1
	x. Water cooler	2
	xi. Cyclostyling Machine	0
	xii. UPS	1
	xiii. CCTV SYSTEM	1
	Total: Other Electrical	8
	equipments/ gadgets	

Transportation is a necessary evil in our society. The institute does not have any self owned buses. The teaching staff, students and members of the office and support staff use their own or public transport for commuting to the college from their respective places of residence. Students staying close by are encouraged to walk or cycle to the institute. Approximately 60% students avail the Government provided bus services to commute to the college at a concessional rate. The office and the staff and students observe no vehicle day on every second Tuesday to promote a clean and green environment.

4.4 Waste Generation and disposal

This indicator addresses waste production and disposal of different wastes like paper, food, plastic, biodegradable, construction, glass, dust etc. and recycling. Waste generation

from tree droppings is a major solid waste generated in the campus. These dried leaves were collected and placed in compost pits for compost preparation. The waste is segregated at the source by providing separate dustbins for Biodegradable and Plastic waste.

Single sided used papers reused for writing and printing in all departments and recently both side printing is carried out as per requirements. Very less plastic waste is generated by the department, office, garden etc. Metal waste and wooden waste is stored and given to authorized scrap agents for further processing.

The solid waste is collected by the municipal corporation and disposed of by their methods. E-waste generated in the campus is very less in quantity. Administration conducts the awareness programs regarding E-waste Management with the help of various departments. The E-waste and defective item from the computer laboratory is being stored properly. The institution has decided to contact approved E-waste management and disposal facilities in order to dispose of E-waste in a scientific manner.

4.5 Green Area

This includes the plants, greenery and sustainability of the campus to ensure that the buildings conform to green standards. Various tree plantation programs are being organized at the college campus with the help of NSS (National Service Scheme) unit, Department of Botany and the Eco Club. This program helps in encouraging an eco-friendly environment which provides pure oxygen within the institute and awareness among villagers.

Annexure: 2 FLORA

Plants type	Total Nos
Tree	40
Shrubs	30
Climbers	nil
Total	70

Annexure: 3 Water Management in the College

Sources of Water in the College:	Municipal, Tank water Supply	
Storage Facility	Sump facility	

Annexure:4 Transportation management

	Own	Public	By	
Particulars	Transport	Transport	walk	Total
Number of students	15	220	80	315
Number of Teaching & non	18	3	3	24
teaching staff	10	J	5	24
Total	33	223	103	359

Annexure:5 Waste management

Type of Waste		
Dry Waste 2-3 kgs		
Wet Waste	1-2 kgs per day	
Plastic Waste 1.5kgs per day		
E waste >1kg per day		
Total ≤ 8 kgs per day		

5.Recommendations

- To dig one more compost pit in the campus
- To encourage eco-friendly dustbins.
- To grow herbs that are medicinally important and also purify the air
- To establish a solar panel on the campus

6. Conclusions

Considering the fact that the institution is located in the mandal headquarters, there is significant environmental awareness for both faculty and students. The environmental awareness initiatives are substantial. Besides, environmental awareness programmes initiated by the administration shows how the campus is going green. Few recommendations are added to curb the menace of waste management using eco-friendly and scientific techniques. Also installation of a Solar Panel (renewable energy source) would minimize the energy consumption, this may lead to a prosperous future in the context of Green Campus & thus

sustainable environment and community development.

Annexure 6: List of plants growing in College premises.

Name of the Tree	Scientific Name of the Tree	Family
Jackfruit	Artocarpus heterophyllus	Moraceae
Neem tree	Azadirachta indica	Meliaceae
Palmyra palm	Borassus flabellifer	Arecaceae
Garden red sandal	pterocarpus santalinus	Santalaceae
Carrot grass	Parthenium hysterophorus	Asteraceae
Areca plam	Dypsis lutescens	Arecaceae
Ice cream bean	Inga edulis	Fabaceae
Tamarind pulp	Dialium indum	Fabaceae
White goose foot	Chenopodium album	Amaranthceae
Blackboard tree	Alstonia scholaris	Apocynaceae
Red wisteria	Sesbania grandiflora	Fabaceae
French broom	Genista monspessulara	Fabaceae
Jurema preta	Mimosa tenuiflora	Fabaceae
Monkey bread	piliostigma thonnigii	Fabaceae
River red gum	Eucalyptus camaldulensis	Myrtaceae
Black Siris	Albizia odoratissima	Fabaceae
Perfume tree	Cananga odarata	Annonaceae
Argentina mosquito tree	Proposis alba thornless	Fabaceae
Syrian oregano	Origanum syriacum	Lamiaceae

@@@@@@@@@

GREEN AUDIT REPORT

(2017-2018)

SCHVPMR GOVERNMENT DEGREE COLLEGE GANAPAVARAM

Acknowledgement

Green Audit Assessment Team thanks the SCHVPMR GOVERNMENT DEGREE COLLEGE for assigning this important work of Green Audit. We appreciate the cooperation extended to our team during the entire process. Our special thanks are due to the Principal and Team of colleagues for giving us necessary inputs to carry out this very vital exercise of Green Audit.

We are also thankful to the IQAC Coordinator and other staff members who were actively involved while collecting the data and conducting field measurements.

Table of Contents

Introduction
1.1 About the College
2. Objectives of the Study
3. Methodology
4. Observations
4.1. Physical structure
4.2. Water Use and Management
4.3. Energy Use and Conservation
4.4. Waste Generation
4.5.Green Area
5. Recommendations
6. Conclusions

1. Introduction

The rapid urbanization and economic development at local, regional and global level has led to several environmental and ecological crises. On this background it becomes essential to adopt the system of the Green Campus for the institute which will lead for sustainable development. We at SCHVPMR GOVERNMENT DEGREE COLLEGE have taken the initiative to make significant contributions in creating a sustainable eco friendly environment. Green Audit can be defined as systematic identification, quantification, recording, reporting and analysis of components of environmental diversity. The 'Green Audit' aims to analyze environmental practices within and outside the college campus, which will have an impact on the eco-friendly ambience. Green Audit helps us to identify and mitigate the ill effects through a sustained and seamless application of remedial measures identified during the audit, to replenish the environment and make the surrounding conducive for a healthy living. An interdisciplinary board of SCHVPMR GOVERNMENT DEGREE COLLEGE is formed with specific goals towards environmental sustenance in the campus. The total area of the campus is 3.5 acres. SCHVPMR GOVERNMENT DEGREE COLLEGE from its time of establishment to date maintains a well developed play ground with flora and fauna to maintain the ecological balance and also an eye feast to stakeholders.

As a major step towards controlling greenhouse gasses, the Principal of SCHVPMR GOVERNMENT DEGREE COLLEGE encourages NSS students to conduct awareness campaigns on plantation under the" JanmaBhoomi" program, a plantation drive initiated by the Govt. of Andhra Pradesh State. Under the audit process the II&III B.Sc. Life Sciences group students and Botany faculty members participated in surveying the plant species in the campus.

2. Objectives of the Study

- 1. To introduce and aware students to real concerns of the environment and its Sustainability.
- 2. To identify, verify and assess the available resources and their management at the college.
- 3. To share the findings of the audit among the student, staff and Management

fraternity to increase the awareness of ecological imbalances and their ill effects.

4. To identify avenues to save energy, water resources and effective waste management to reduce losses due to the usage of these resources

GREEN AUDIT COMMITTEE:

NAME	DESIGNATION	
Sri. P. Madhu Raju	Convenor, Principal (FAC), SCHVPMR GDC Ganapavaram	
Dr. Ramudu Machavarapu	Assistant Professor of Physics (Ad Hoc) NIT AP,	
	Tadepalligudem	
Dr.Ch.CHaitanya	Assistant Professor of Botany, GDC(M) Adilabad	
Sri. NVNB Srinivas Rao	Lecturer in Chemistry, DRG GDC Tadepalligudem	
Dr. V. Sandhya	Lecturer in Zoology, SCHVPMR GDC Ganapavaram	

3. Methodology

In order to perform green audit, the methodology included collection of information related to College Building, laboratories, office- based environmental impacts like built-up area, utility bills, energy-saving devices and IT equipment etc. Hence, physical inspection of the campus, observation and review of the documentation, interviewing key persons were carried out. This information needs to be documented and tabulated for arriving at a clear picture of the Institution's annual greenhouse gas emissions and impact of the reduction measures to be undertaken.

Green Audit Process:

- Teams were formulated with clear instructions and scope of the Audit to collect the data.
- Documentation of physical evidence based on the verification and valuation of the resources and assets.
- Analysis of the data to identify the areas of improvement
- Discussion with subject matter experts and relaying the information to the stakeholders for further analysis and its implementations with action plans to meet

the desired standards.

4. Observations

4.1 Physical Structure

The college campus is spread across 3.6 acres of land on Tadepalligudem road. With a built-up area of 1476 square meters, the college is functioning in its own pucca building with two floors (G+1) and RUSA-supported 2nd floor is under construction. Slab work for the entire floor is completed and three computer labs are already arranged there. There are 9 classrooms for conventional teaching and 2 ICT-enabled classrooms, including one smart room, one Virtual Class room on the 1st floor.

Classrooms	9
Staff rooms	1
Laboratories	6
Seminar Hall	1
Library	1
Administrative Office	1
Principal's Office	1
Washrooms	10

4.2 Water Use and Management

The study observed that Municipal connection is the major source of water in college. Water is used for drinking purposes, toilets and gardening. There is one RO plant on the premises that caters to the drinking water requirements. The waste water from the RO plants is redirected for cleaning purposes, watering plants and sometimes the open ground to prevent dust from infiltrating into the air. During the survey, no loss of water is observed, neither by any leakages, or by over flow of water from overhead tanks. On an average the total use of water in the college is 1500 L/day, which include domestic, gardening and drinking purposes. One rain water harvesting unit is also functional for recharging ground water level.

Water Conservation Strategies:

• Water consumption in laboratories is minimized by closing the main valves to avoid any kind of leakage.

• Used organic solvents after physical experimentation are not let into the drains; they are recovered and reused for cleaning.

• Organic compounds prepared in the chemistry lab by BSC students are bottled and issued during the subsequent semester for organic compound analysis.

4.3 Energy Use and Conservation

This indicator addresses energy consumption, energy sources, energy monitoring, lighting, appliances, natural gas and vehicles. Energy use is clearly an important aspect of campus sustainability and thus requires no explanation for its inclusion in the assessment.

Energy source utilized by the campus is electricity only. Total average energy consumption is determined as 1063 KWH/month. The entire campus including common facility centers are equipped with tube lights and bulbs. Campus administration runs a switch–off drill on a regular basis.

Annexure: 1

S.No	ITEMS/ Equipments	Numbers
1	Tubes & Bulbs	65
2	Fan	104
3	LED Bulbs	nil
4	Air Conditioners	3

GREEN AUDIT REPORT:

2017-18

SCHVPMR	GOVERNMENT	DEGREE	COLLEGE
GANAPAVA	RAM		

GAR	GANAPAVARAM			
5	Projector	1		
6	Computers	94		
7	Printers	9		
8	Other Electrical equipments/			
	gadgets			
	i. Fridge	3		
	ii. Oven	nil		
	iii. Freezer	nil		
	iv. Amplifier	nil		
	v. Microwave	0		
	vi. Geyser	0		
	vii. LCD/Television	6		
	viii. Ice cube maker	0		
	ix. Ro plant	1		
	x. Water cooler	2		
	xi. Cyclostyling Machine	0		
	xii. UPS	1		
	xiii. CC TV SYSTEM	1		
	Total: Other Electrical	8		
	equipments/ gadgets			

Transportation is a necessary evil in our society. The institute does not have any self owned buses. The teaching staff, students and members of the office and support staff use their own or public transport for commuting to the college from their respective places of residence. Students staying close by are encouraged to walk or cycle to the institute. Approximately 60% students avail the Government provided bus services to commute to the college at a concessional rate. The office and the staff and students observe no vehicle day on every second Tuesday to promote a clean and green environment.

4.4 Waste Generation and disposal

This indicator addresses waste production and disposal of different wastes like paper, food, plastic, biodegradable, construction, glass, dust etc. and recycling. Waste generation

from tree droppings is a major solid waste generated in the campus. These dried leaves were collected and placed in compost pits for compost preparation. The waste is segregated at the source by providing separate dustbins for Biodegradable and Plastic waste.

Single sided used papers reused for writing and printing in all departments and recently both side printing is carried out as per requirements. Very less plastic waste is generated by the department, office, garden etc. Metal waste and wooden waste is stored and given to authorized scrap agents for further processing.

The solid waste is collected by the municipal corporation and disposed of by their methods. E-waste generated in the campus is very less in quantity. Administration conducts the awareness programs regarding E-waste Management with the help of various departments. The E-waste and defective item from the computer laboratory is being stored properly. The institution has decided to contact approved E-waste management and disposal facilities in order to dispose of E-waste in a scientific manner.

4.5 Green Area

This includes the plants, greenery and sustainability of the campus to ensure that the buildings conform to green standards. Various tree plantation programs are being organized at the college campus with the help of NSS (National Service Scheme) unit, Department of Botany and the Eco Club. This program helps in encouraging an eco-friendly environment which provides pure oxygen within the institute and awareness among villagers.

Annexure: 2 FLORA

Plants type	Total Nos
Trees	40
Shrubs	20
Climbers	nil
Total	100

Annexure: 3 Water Management in the College

Sources of Water in the College:	Municipal, Tank water Supply
Storage Facility	Sump facility

Annexure:4 Transportation management

	Own	Public	By	
Particulars	Transport	Transport	walk	Total
Number of students	15	220	100	335
Number of Teaching & non	18	3	3	24
teaching staff	10	J	5	24
Total	33	223	103	359

Annexure:5 Waste management

Type of Waste			
Dry Waste	2-3 kgs		
Wet Waste	1-2 kgs per day		
Plastic Waste	1.5kgs per day		
E waste	>1kg per day		
Total	≤ 8 kgs per day		

5.Recommendations

- To dig one more compost pit in the campus
- To encourage eco-friendly dustbins.
- To grow herbs that are medicinally important and also purify the air
- To establish a solar panel on the campus

6. Conclusions

Considering the fact that the institution is located in the mandal headquarters, there is significant environmental awareness for both faculty and students. The environmental awareness initiatives are substantial. Besides, environmental awareness programmes initiated by the administration shows how the campus is going green. Few recommendations are added to curb the menace of waste management using eco-friendly and scientific techniques. Also installation of a Solar Panel (renewable energy source) would minimize the energy consumption, this may lead to the prosperous future in the context of Green Campus & thus

sustainable environment and community development.

Annexure 6: List of plants growing in College premises.

Name of the Tree	Scientific Name of the Tree	Family
Jackfruit	Artocarpus heterophyllus	Moraceae
Neem tree	Azadirachta indica	Meliaceae
Palmyra palm	Borassus flabellifer	Arecaceae
Garden red sandal	pterocarpus santalinus	Santalaceae
Carrot grass	Parthenium hysterophorus	Asteraceae
Areca plam	Dypsis lutescens	Arecaceae
Ice cream bean	Inga edulis	Fabaceae
Tamarind pulp	Dialium indum	Fabaceae
White goose foot	Chenopodium album	Amaranthceae
Blackboard tree	Alstonia scholaris	Apocynaceae
Red wisteria	Sesbania grandiflora	Fabaceae
French broom	Genista monspessulara	Fabaceae
Jurema preta	Mimosa tenuiflora	Fabaceae
Monkey bread	piliostigma thonnigii	Fabaceae
River red gum	Eucalyptus camaldulensis	Myrtaceae
Black Siris	Albizia odoratissima	Fabaceae
Perfume tree	Cananga odarata	Annonaceae
Argentina mosquito tree	Proposis alba thornless	Fabaceae
Syrian oregano	Origanum syriacum	Lamiaceae

CERTIFICATE (GREEN, ENERGY & ENVIRONMENT AUDIT)

This is to certify that Environmental, Energy and Green Audit has been conducted at SCHVPMR Government Degree College Ganapavaram by the Green Audit Committee constituted by the Principal of SCHVPMR Government Degree College Ganapavaram. The Committee has verified the Green initiatives carried out by the College and the College has successfully demonstrated knowledge on Energy Conservation, Water Conservation, Biodiversity, Waste Management and Carbon footprint. The Green Audit Committee is pleased to declare the below grades in the following categories for the satisfactory performance of the College, and this certification is valid for one year from August 2020 to July 2021.

Green Initiatives: A **Energy Conservation: B Environmental Protection:** A Dr. Ramudu Machavarapu Dr. Ch. Chaitanya School of Sciences NVNB Srinivas Rao Dr. V. Sandhya Dept. of Botany Dept. of Chemistry NIT AP, Tadepalligudem Dept. of Zoology SR & BGNR Govt. Arts & Science DRG Govt. Degree College. SCHVPMR Govt. Degree College, College(A), Khammam Tadepalligudem Ganapavaram

This is to certify that **Environmental, Energy and Green Audit** has been conducted at SCHVPMR Government Degree College College Ganapavaram by the **Green Audit Committee** constituted by the Principal of SCHVPMR Government Degree College Ganapavaram. The Committee has verified the Green initiatives carried out by the College and the College has successfully demonstrated knowledge on Energy Conservation, Water Conservation, Biodiversity, Waste Management and Carbon footprint. The Green Audit Committee is pleased to declare the below grades in the following categories for the satisfactory performance of the College, and this certification is valid for one year from August 2019 to July 2020.

Environmental Protection: A Energy Conservation: B Green Initiatives: A Dr. Ch. Chaitanya V. Sandhva Dr. Ramudu Machavarapu NVNB Srinivas Rao School of Sciences Dept. of Zoology Dept. of Botany Dept. of Chemistry NIT AP, Tadepalligudem SCHVPMR Govt. Degree College, SR & BGNR Govt, Arts & Science DRG Govt. Degree College, College(A), Khammam Ganapavaram Tadepalligudem

This is to certify that **Environmental, Energy and Green Audit** has been conducted at SCHVPMR Government Degree College Ganapavaram by the Green Audit Committee constituted by the Principal of SCHVPMR Government Degree College Ganapavaram. The Committee has verified the Green initiatives carried out by the College and the College has successfully demonstrated knowledge on Energy Conservation, Water Conservation, Biodiversity, Waste Management and Carbon footprint. The Green Audit Committee is pleased to declare the below grades in the following categories for the satisfactory performance of the College, and this certification is valid for one year from August 2018 to July 2019.

Green Initiatives: A

Energy Conservation: B

Environmental Protection: A

M. Koum

Dr. Ramudu Machavarapu School of Sciences NIT AP, Tadepalligudem

Dr. Ch. Chaitanya

Dept. of Botany SR & BGNR Govt. Arts & Science College(A), Khammam

NVNB Srinivas Rao Dept. of Chemistry DRG Govt. Degree College, Tadepalligudem

Dept. of Zoology SCHVPMR Govt. Degree College, Ganapavaram

This is to certify that **Environmental, Energy and Green Audit** has been conducted at SCHVPMR Government Degree. College Ganapavaram by the **Green Audit Committee** constituted by the Principal of SCHVPMR Government Degree College Ganapavaram. The Committee has verified the Green initiatives carried out by the College and the College has successfully demonstrated knowledge on Energy Conservation, Water Conservation, Biodiversity, Waste Management and Carbon footprint. The Green Audit Committee is pleased to declare the below grades in the following categories for the satisfactory performance of the College, and this certification is valid for one year from August 2017 to July 2018.

CERTIFICATE

(GREEN, ENERGY & ENVIRONMENT AUDIT)

Energy Conservation: B Environmental Protection: A Green Initiatives: A Dr. Ramudu Machavarapu Dr. Ch. Chaitanya Dr. V. Sandhya NVNR Srinivas Rao School of Sciences Dept. of Zoology Dept. of Botany Dept. of Chemistry NIT AP, Tadepalligudem Govt. Degree College(M), SCHVPMR Govt. Degree College, DRG Govt. Degree College, Adilabad Ganapavaram Tadepalligudem